
Kernels in Functional Data Analysis

Ruoxu Tan

January 22, 2025

This note collects a few basic concepts and results on different but related
topics in functional data analysis where “kernels” play a fundamental role. This
note can be used as a first glance before learning the related method and theory
in detail. There are many different kernels in machine learning. For example,
in the kernel regression, a kernel is typically a symmetric density. Besides, in
the kernel support vector machines, a kernel is a bivariate nonlinear mapping
from the feature space to a higher dimensional space. The kernel discussed
in this note is more closely related to the latter, but we focus on the kernel-
deduced functional space, which is different from the kernel support vector
machines.

1 Reproducing Kernel Hilbert Space
We start from introducing the Reproducing Kernel Hilbert Space (RKHS)
following Berlinet and Thomas-Agnan (2011). Let E be an abstract non-
empty set. Consider a Hilbert space H of real-valued functions defined on E

endowed with the inner product 〈·, ·〉H. In the kernel support vector machines,
E is the d-dim Euclidean space Rd where covariates lie in. However, in this
note, we mainly concerns E as a compact interval, say [0, 1].

Definition 1. A bivariate function K : E ×E → R is a reproducing kernel if
(1) ∀t ∈ E, K(·, t) ∈ H; and (2) ∀t ∈ E and ∀h ∈ H, 〈h(·), K(·, t)〉H = h(t).

The (2) property above is the so-called “reproducing property”: the value
of h at t is reproduced by the inner product of h and the kernel induced
function K(·, t). Since K(·, s) itself is a function in H by (1), we deduce from
(2) that 〈K(·, s), K(·, t)〉H = K(t, s) = K(s, t). A Hilbert space of real-valued
functions which possesses a reproducing kernel is called a RKHS.
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Example 1. The Hilbert space L2([a, b]) is not a RKHS, because there is no
reproducing kernel satisfying∫

[a,b]

K(s, t)h(s) ds = h(t), ∀h ∈ L2([a, b]);

see Example 3 in Chapter 1 of Berlinet and Thomas-Agnan (2011) for details.
The example shows that for any kernel on [a, b]× [a, b], the spanned RKHS is
a strict subspace of L2([a, b]).

To give a first characterization of a RKHS, we need the concept of contin-
uous or bounded functional. We say a functional f : H → R is continuous if
∀ϵ > 0, ∃δ > 0 such that if ‖h1 − h2‖H < δ then |f(h1) − f(h2)| < ϵ. We say
a functional f : H → R is bounded if ∃M > 0 such that |f(h)| ≤ M‖h‖H,
∀h ∈ H. A well known property of a linear functional is that continuity is
equivalent to boundedness. For any t ∈ E, let et : H → R denote the evalu-
ation functional at t: et(h) = h(t), for any h ∈ H. It is easy to see that the
evaluation functional is linear.

The Riesz representation theorem tells us that for any continuous linear
functional f , there exist a function gf ∈ H such that f(h) = 〈h, gf〉H. An
application of the Riesz representation theorem leads to the following result.

Theorem 1. A Hilbert space of real-valued functions on E has a reproducing
kernel if and only if all the evaluation functionals et, t ∈ E, are continuous.

Proof outline. (⇒) The Cauchy-Schwarz inequality applied on et(h) = 〈h,K(·, t)〉H.
(⇐) The Riesz representation theorem applied on et.

Next, we discuss a basic characterization of a reproducing kernel.

Definition 2 (Positive type function). A bivariate function K : E × E → R
is a positive type function if

n∑
i=1

n∑
j=1

aiajK(ti, tj) ≥ 0 , ∀n ≥ 1, ai ∈ R, ti ∈ E.

For any reproducing kernel K, we have
n∑

i=1

n∑
j=1

aiajK(ti, tj) = ‖
n∑

i=1

aiK(ti, ·)‖2H ≥ 0 ,

implying that K is positive type. The converse is the famous Moore-Aronszajn
theorem.
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Theorem 2 (Moore-Aronszajn). Let K be a positive type function on E ×E.
There exists a unique RKHS H of functions on E with K as the reproducing
kernel. Specifically, H is spanned by the functions {K(·, t)}t∈E with the inner
product

〈f, g〉H =
∞∑
i=1

∞∑
j=1

αiβjK(yj, xi) ,

where f =
∑∞

i=1 αiK(·, xi) and g =
∑∞

j=1 βiK(·, yj) are the Cauchy sequences.

An important representation theorem of a continuous symmetric positive
type function is the famous Mercer theorem.

Theorem 3 (Mercer). Let K be a continuous symmetric positive type function
on [a, b] × [a, b]. There exists an orthonormal basis {ϕi}∞i=1 of L2([a, b]) such
that

K(s, t) =
∞∑
j=1

λjϕj(s)ϕj(t),

where λ1 ≥ λ2 ≥ . . . ≥ 0 are called the eigenvalues of K, and ϕj are called the
eigenfunctions of K.

A continuous symmetric positive type function is referred as a Mercer
kernel. For any Mercer kernel K : [a, b] × [a, b] → R, we can associate
it with a linear operator K : L2([a, b]) → L2([a, b]) defined by K(ϕj)(t) =∫ b

a
K(s, t)ϕj(s) ds. The first application of the Mercer theorem is the following

example.

Example 2 (RKHS generated by a Mercer kernel). Let K be a Mercer kernel
on [a, b]× [a, b], then there exists a unique RKHS H of functions on [a, b] with
K as the reproducing kernel by the Moore-Aronszajn theorem. According to
the Mercer theorem, we can express K by

K(s, t) =
∞∑
j=1

λjϕj(s)ϕj(t), ∀s, t ∈ [a, b],

where {ϕi}∞i=1 is an orthonormal basis of L2([a, b]). Next, we try to find an
expression of the inner product 〈·, ·〉H of H in terms of 〈·, ·〉L2 , the inner product
of L2([a, b]).

For any f ∈ H, we can write f(t) =
∑∞

j=1〈f, ϕj〉L2ϕj(t). Using the repro-
ducing property and the expression ofK above, we have f(t) = 〈f(·), K(·, t)〉H =
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∑∞
j=1 λj〈f, ϕj〉Hϕj(t). It follows that for all j, 〈f, ϕj〉L2 = λj〈f, ϕj〉H. Now, for

any g ∈ H, we write g(t) =
∑∞

j=1〈g, ϕj〉L2ϕj(t), then we conclude that

〈f, g〉H =
∞∑
j=1

〈g, ϕj〉L2〈f, ϕj〉H

=
∞∑
j=1

〈f, ϕj〉L2〈g, ϕj〉L2

λj
.

Therefore, the RKHS generated byK isH = {f ∈ L2[a, b];
∑∞

j=1

⟨f,ϕj⟩2L2

λj
<∞},

which is a strict subspace of L2[a, b], confirming the argument in Example 1.

Now we are able to introduce the random element in functional data anal-
ysis. Given a sample space Ω, let X be a measurable mapping from Ω to H,
where H is a RKHS of functions on a compact interval E. The random element
X is the random variable of interest in functional data analysis, also known as
the random function/process on E, the functional datum, the functional vari-
able, etc. In fact, the set E is allowed to not be a compact interval, which leads
to a general functional variable. When the set E is restrictive to a compact
interval, the corresponding X is sometimes referred to as a one-dimensional
functional variable. As we only discuss one-dimensional functional data in this
note, we omit the term “one-dimensional”.

To study the random function X, just similar to what we learned in ele-
mentary statistics, we focus on the first two moments of X. Here, the moments
also become functions introducing obscurity indeed. The first moment func-
tion of X, the mean function m = E(X), is relatively easy to understand,
while the centered second moment function of X, the covariance function
CX(s, t) = E{X(s)X(t)} − E{X(s)}E{X(t)} is more difficult and more im-
portant to be investigated. We assume that X has finite second moment, i.e.,
supt∈E CX(t, t) < ∞, under which X is referred to as a second order random
process.

Remark 1. In some literature, it is occasional to define the covariance function
as E{X(s)X(t)}, i.e., the second moment. The covariance operator defined
below needs to be modified accordingly. Both definitions are useful under certain
applications.

We first introduce a crucial concept related to the covariance function.

Definition 3 (Covariance operator). The covariance operator CX : H → H
of X is defined as CX(h) = E{〈X −m,h〉H(X −m)}.
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Definition 4 (Kernel of an operator). Let H be a Hilbert space of functions
defined on E, and let u be an operator in H. A function U : E × E → R is
a kernel of u if (1) ∀t ∈ E, U(·, t) ∈ H; and (2) ∀t ∈ E, ∀h ∈ H, u(h)(t) =
〈U(·, t), h(·)〉H.

Remark 2. The kernel of an operator here is a slight generalization to the
Mecer kernel and its associated operator defined below Theorem 3, in the sense
that the inner product 〈·, ·〉H here can be different from 〈·, ·〉L2.

The covariance operator CX is self-adjoint, positive, continuous and com-
pact. The covariance function CX : E × E → R and the covariance operator
CX : H → H use the same notation is a common slight abuse of notation.
Because ∀t ∈ E,

CX(h)(t) = E[〈X −m,h〉H{X(t)−m(t)}]
= 〈E[{X(·)−m(·)}{X(t)−m(t)}], h(·)〉H = 〈CX(·, t), h(·)〉H ,

we see that the covariance function is the kernel of the covariance operator.
Further, by taking h(·) = K(·, s), ∀s ∈ E, the reproducing kernel, we conclude

CX(s, t) = [CX{K(·, s)}](t) .

The second application of the Mercer theorem is applying it on the co-
variance function CX , which yields the Karhunen–Loève expansion of X, the
foundation of the functional principal component analysis.

Theorem 4 (Karhunen–Loève). Let X be a second order random process on
[a, b], then the following representation of X holds,

X(t) = m(t) +
∞∑
j=1

ξjϕj(t),

where ϕj are the eigenfunctions of CX (also orthonormal bases of L2([a, b])),
ξj are mean zero and variance λj uncorrelated random variables. The values
λ1 ≥ λ2 ≥ . . . ≥ 0 are the eigenvalues of CX .

The descending order of λj is crucial to the functional principal component
analysis, because it implies that the truncation to the first d principal com-
ponents Xd(t) = m(t) +

∑d
j=1 ξjϕj(t) capture the most variability of X, i.e.,

minimal information is lost.
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2 Functional Regression

2.1 Function-to-scalar Linear Regression Using RKHS
We follow Yuan and Cai (2010) to introduce the RKHS technique used in
function-to-scalar linear regression. Let {(Xi, Yi)}ni=1 be an i.i.d. copy of (X,Y ),
where X = X(·) is a second order random process on a compact interval T
and Y is a scalar variable satisfying

Y = α0 +

∫
T
X(t)β0(t) dt+ ϵ.

Here α0 is the intercept, β0 is the slope function and ϵ is the noise variable
satisfying E(ϵ) = 0 and E(ϵ2) < ∞. The key assumption is that the slope
function β0 lies in a RKHS H.

The method of regularization to estimate α0 and β0 is given by

(α̂, β̂) = argmin
α∈R,β∈H

1

n

n∑
i=1

{
Yi − α−

∫
T
Xi(t)β(t) dt

}2

+ λJ(β) , (1)

where J(β) =
∫
T {β

(m)(t)}2 dt with β(m) denoting the m-th order derivative of
β. With this choice of the penalty J(β), the RKHS H is in fact the m-order
Sobolev space Wm

2 (T ) defined as

Wm
2 (T ) = {β : T → R, β, . . . , β(m−1) are absolutely continuous and

β(m) ∈ L2(T )} ,

where the norm is given by

‖β‖2Wm
2

=
m−1∑
q=0

(∫
β(q)

)2

+

∫
(β(m))2 .

The most appealing property of the RKHS estimator given in (1) is that
the minimization problem in (1) has a closed-form solution. It is easy to see
that

α̂ = Ȳ −
∫
T
X̄(t)β̂(t) dt , (2)

where Ȳ =
∑n

i=1 Yi/n and X̄ =
∑n

i=1Xi/n. Next, we derive β̂.
Consider the null space H0 of the penalty functional J ,

H0 = {β ∈ H : J(β) = 0} ,

which is a finite-dimensional linear subspace of H with the orthonormal basis
{ξ1, . . . , ξN}. Let H1 be its orthogonal complement such that H = H0 ⊕ H1.
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For any f ∈ H, there exists a unique decomposition f = f0 + f1, where
f0 ∈ H0 and f1 ∈ H1. Note that H1 is also a RKHS with the inner product
of H restricted to H1. Letting K be the reproducing kernel of H1, we have,
for any f1 ∈ H1, J(f1) = ‖f1‖2K = ‖f1‖2H. We assume that K is continuous
and positive-type, i.e., a Mercer kernel. As noted below Theorem 3, K is also
a linear operator given by

(Kf)(t) =

∫
T
K(t, s)f(s) ds, ∀t ∈ T .

It is known that Kf ∈ H1, for any f ∈ L2. Also, note that, for any f ∈ H

〈Kf, β〉H =

∫
T
〈K(·, s), β〉Hf(s) ds =

∫
T
β(s)f(s) ds.

The observations above lead to the following important representer theorem,
which is a generalization of the representer lemma for smoothing splines.

Theorem 5. The estimator β̂ has the following finite-dimensional represen-
tation,

β̂ =
N∑
k=1

dkξk(t) +
n∑

i=1

ci(KXi)(t) ,

where c1, . . . , cn, d1, . . . , dN ∈ R.

With α̂ given at (2), β̂ in (1) can be written by

β̂ = argminβ∈H

[ 1
n

n∑
i=1

{
Yi − Ȳ −

∫
T
{Xi(t)− X̄(t)}β(t) dt

}2

+ λJ(β)
]
. (3)

Consider the case H = W 2
2 and thus J(β) =

∫
T {β

(2)(t)}2 dt. It follows that
H0 is spanned by {ξ1(t) = 1, ξ2(t) = t}. A popular reproducing kernel K of
H1 is given by

K(s, t) =
1

4
B2(s)B2(t)−

1

4!
B4(|s− t|) .

Using Theorem 5, we have

β̂ = d1 + d2t+
n∑

i=1

ci

∫
T
{Xi(s)− X̄(s)}K(t, s) ds.

Letting c = (c1, . . . , cn)
⊤,d = (d1, d2)

⊤, the minimization problem in (3) is
equivalent to

(ĉ, d̂) = argminc∈Rn,d∈R2

1

n
‖Y − (Td+ Σc)‖2ℓ2 + λc⊤Σc ,
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where Y = (Y1− Ȳ , . . . , Yn− Ȳ )⊤, T is an n×2 matrix with the (i, j)-th entry
given by

Tij =

∫
T
{Xi(t)− X̄(t)}tj−1 dt ,

and Σ is an n× n matrix with the (i, j)-th entry given by

Σij =

∫
T

∫
T
{Xi(s)− X̄(s)}K(s, t){Xi(t)− X̄(t)} ds dt .

The weighted least squared problem for (ĉ, d̂) above has the following explicit
solution,

d̂ = (T⊤W−1T )−1T⊤W−1Y ,

ĉ = W−1{In − T (T⊤W−1T )−1T⊤W−1}Y ,

where W = Σ+ nλIn with In the n-order identity matrix.

2.2 Function-to-function Nonlinear Regression Using RKHS
In this subsection, we follow Kadri et al. (2016) to introduce the function-
to-function nonlinear regression using RKHS. Here the function-to-function
operator is assumed to lie in a RKHS of operators, i.e., function-valued func-
tions. Such generalizations require further technical development as well as
computational algorithms.

2.2.1 RKHS of Operators

Let X = {x(·) : TX → R} and Y = {y(·) : TY → R} be the Hilbert spaces of
real-valued functions where the random processes X and Y are valued in. Let
L(Y) denote the set of bounded linear operators from Y → Y . To investigate
the RKHS of operators, we first define operator-related concepts.

Definition 5 (adjoint, self-adjoint, and positive operators). Let A ∈ L(Y),
then
(1) A∗, the adjoint operator of A, is the unique operator in L(Y) that satisfies

〈Ay, z〉Y = 〈y, A∗z〉Y , ∀y, z ∈ Y ;

(2) A is self-adjoint if A = A∗;
(3) A is positive if it is self-adjoint and ∀y ∈ Y, 〈Ay, y〉Y ≥ 0;
(4) A is larger than or equal to B ∈ L(Y), if A− B is positive, i.e., ∀y ∈ Y,
〈Ay, y〉Y ≥ 〈By, y〉Y .
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Definition 6 (Operator-valued kernel). An L(Y)-valued kernel K on X × X
is

(1) Hermitian if K(w, z) = K(z, w)∗, where K(·, ·)∗ denotes the adjoint
operator;

(2) nonnegative on X if it is Hermitian and ∀n ≥ 1, wi ∈ X , ui ∈ Y, the
n× n matrix 〈K(wi, wj)ui, uj〉Y is positive-definite.

Now we are able to define a function-valued RKHS.

Definition 7 (Function-valued RKHS). A Hilbert space F of functions from
X to Y is called a RKHS if there is a nonnegative L(Y)-valued kernel K on
X × X such that:
(1) the function z 7→ K(w, z)g belongs to F , ∀z, w ∈ X and g ∈ Y;
(2) ∀F ∈ F , w ∈ X and g ∈ Y, 〈F,K(w, ·)g〉F = 〈F (w), g〉Y .

If the reproducing kernel K is locally bounded and separately continuous,
we call it a Mercer kernel. The following theorem is an extension of the Moore-
Aronszajn theorem to the case of function-valued RHKS.

Theorem 6. A L(Y)-valued Mercer kernel K on X 2 is the reproducing kernel
of some Hilbert space F if and only if it is nonnegative.

Although we have defined the operator-valued kernel, it remains to explic-
itly design a few operator-valued kernels. To this end, we first present a result
that produces new kernels by combing existing ones.

Theorem 7. Let H and G be two nonnegative operator-valued kernels from
X × X → L(Y), then
(1) K = H +G is a nonnegative kernel;
(2) if H(w, z)G(w, z) = G(w, z)H(w, z), ∀w, z ∈ X , then K = HG is a
nonnegative kernel;
(3) K = THT ∗ is a nonnegative kernel for any T : X → L(Y).

As for application to functional data, consider Y as the Hilbert space L2(T )

of square integrable functions on a compact interval T endowed with the usual
inner product 〈ϕ, ψ〉Y =

∫
T ϕ(t)ψ(t) dt. Next, we present three examples of

operator-valued kernels.

1. (Multiplication operator) For any h ∈ Y , a multipilication operator T h

on Y is defined as T h : Y → Y , T h(y)(t) = h(t)y(t), ∀t ∈ T . The
associated operator-valued kernel K is defined as K : X × X → L(Y),
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K(x1, x2)(y)(·) = kx(x1, x2)T
ky(y)(·), where kx : X×X → R is a positive

definite scalar-valued kernel and ky is a positive real function. It is easy
to see that K is Hermitian and positive.

2. (Hilbert-Schmidt integral operator) A Hilbert-Schmidt integral operator
T h associated with a kernel h : T × T → R is defined as: T h : Y → Y ,
T h(y)(t) =

∫
h(s, t)y(s) ds, ∀t ∈ T . An operator-valued kernel K associ-

ated with positive kernels kx : X ×X → R and ky : T ×T → R is defined
as K : X × X → L(Y), K(x1, x2)(y)(·) = kx(x1, x2)

∫
ky(s, ·)f(s) ds. If

ky is Hermitian, then K is also Hermitian.

3. (Composition operator) Let ϕ : T → T be an analytic map, the associ-
ated composition operator Cϕ : Y → Y is defined as Cϕ(y) = y ◦ ϕ. In
the case that Y is a RKHS with the kernel k, we have

〈f, C∗
ϕk(t, ·)〉Y = 〈Cϕ(f), k(t, ·)〉Y = 〈f ◦ ϕ, k(t, ·)〉Y = f(ϕ)(t)

= 〈f, k(ϕ(t), ·)〉Y ,

implying that C∗
ϕk(t, ·) = k(ϕ(t), ·). Similarly, we have C∗

ϕ(f)(t) =

〈f, k(t, ϕ(·)〉Y . Once a composition operator and its adjoint operator
are well expressed in a RKHS, we can define a operator-valued kernel
K : X × X → L(Y) as K(x1, x2) = Cϕ(x1)C

∗
ϕ(x2)

, where ϕ(x1) and ϕ(x2)

are analytic maps from T to T . Using Theorem 7 (3), we see that K is
nonnegative.

2.2.2 Function-valued Functional Learning

Consider the function-to-function regression of estimating F (x) = E(Y |X =

x) from observed data (xi, yi)
n
i=1, where (xi, yi) ∈ X × Y = L2(Ωx) × L2(Ωy),

the Hilbert spaces of square integrable functions on Ωx and Ωy.
The estimator of F via the method of regularization is defined as

F̃λ = argminF∈F ‖yi − F (xi)‖2Y + λ‖F‖2F , (4)

where λ > 0 is a regularization parameter.
In the case that F is a real-valued RKHS, the solution of the minimization

problem above has the following form,

F̃ (x) =
n∑

i=1

αiK(xi, x) ,
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where αi ∈ R and K is the reproducing kernel. An extension to the case of
function-valued RKHS leads to the following form,

F̃ (·) =
n∑

i=1

K(xi, ·)ui ,

where ui(·) ∈ Y are functions and K is the nonnegative operator-valued repro-
ducing kernel. Plugging the expression above into (4), we obtain the following
minimization problem over n scalar-valued functions ui ∈ Y ,

ũλ = (ũλ1, . . . , ũλn)
⊤

= argmin
u∈Yn

n∑
i=1

‖yi −
n∑

j=1

K(xi, xj)uj‖2Y + λ
n∑

i=1

n∑
j=1

〈K(xi, xj)ui, uj〉Y .

Setting the directional derivative of u above to zero yields that the vector of
functions u ∈ Yn satisfies the following system of linear operator equations,

(K+ λI)u = y ,

where K = [K(xi, xj)]i,j=1,...,n is a n × n block operator kernel matrix and
y = (y1, . . . , yn)

⊤.
To overcome the problem of finding the inverse of the block operator kernel

matrix K, we assume that the operator-valued kernel K has the following form,

K(xi, xj) = g(xi, xj)T ,

where g : X × X → R is a scalar-valued kernel and T is a linear operator in
L(Y). For example, if T is a integral operator with the kernel e−|t−s|, then

K(xi, xj)(y)(t) = g(xi, xj)

∫
Ωy

e−|t−s|y(s) ds ,

for y ∈ Y . It follows that the block operator kernel matrix K can be expressed
as

K =

g(x1, x1)T · · · g(x1, xn)T

· · ·
g(xn, x1)T · · · g(xn, xn)T

 = G⊗ T ,

where G = [g(xi, xj)]i,j=1,...,n. Using the basic property of the Kronecker prod-
uct, we obtain that K−1 = G−1 ⊗T−1, and thus we only need to find G−1 and
T−1.

The inversion of n× n matrix G can be expressed by G−1 = V ΓV ⊤, where
V = (v1, . . . , vn) consists of eigenvectors vi of G, and Γ = diag(α−1

1 , . . . , α−1
n )
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with αi the eigenvalue of G. In terms of inversion of a linear operator T , we
utilize the result that if T is compact and normal, then

T (y) =
∞∑
i=1

δi〈y, ωi〉Yωi ,

where δi and ωi are referred to as the eigenvalues and the eigenfunctions of T .
It follows that T−1(y) =

∑∞
i=1 δ

−1
i 〈y, ωi〉Yωi. For fixed G, K + λI can also be

seen as an operator in L(Y). Therefore, to compute u = (K+ λI)−1y, we fix
a truncation parameter κ, and obtain

û =
nκ∑
i=1

(θi + λ)−1〈zi,y〉Ynzi ,

where θ = (θ1, . . . , θnκ)
⊤ = (α1, . . . , αn)

⊤ ⊗ (δ1, . . . , δκ)
⊤, z = (z1, . . . , znκ)

⊤ =

(v1, . . . , vn)
⊤ ⊗ (ω1, . . . , ωκ)

⊤ and 〈a,b〉Yn =
∑n

i=1〈ai, bi〉Y .

3 Gaussian Measure in Hilbert Space
An obstacle to study random variables in an infinite dimensional space is that
the Lebesgue measure generally does not exist. Yet, a Gaussian measure can be
well defined in a separable Banach space, which can serve as an alternative to
the Lebesgue measure. Therefore, a Gaussian measure, induced by a Gaussian
process, plays a fundamental role in studying infinite dimensional random
elements. In this section, we follow Kuo (1975) and Williams and Rasmussen
(2006) to introduce the concepts of Gaussian processes particularly in a Hilbert
space.

Let H be a separable Hilbert space with norm | · | =
√

〈·, ·〉H. Let A be a
linear operator in H.

Definition 8 (Hilbert-Schmidt operator). A linear operator A in H is a
Hilbert-Schmidt operator if for some orthonormal basis {en}∞n=1 of H,

∞∑
n=1

|A(en)|2 <∞.

The Hilbert-Schmidt norm of A is defined as ‖A‖2 =
(∑∞

n=1 |A(en)|2
)1/2

.

Note that the Hilbert-Schmidt norm does not depend on the choice of
{en}∞n=1. An example of Hilbert-Schmidt operator is the integral operator
defined in Section 2.2.1.

A operator in H is compact if it maps any bounded subset of H into a set
whose closure is compact. The following expression for a self-adjoint compact
operator has actually been used in Section 2.2.2.
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Theorem 8. If A is a self-adjoint compact operator in H, then there exists
an orthonormal basis {en}∞n=1 of H such that

A(x) =
∞∑
n=1

λn〈x, en〉Hen ,

where the λn’s and en’s are called the eigenvalues and eigenfunctions of A. If
A is positive definite, then λn ≥ 0.

Definition 9 (Trace class operator). A compact operator A in H is called a
trace class operator if

∑∞
n=1 λn < ∞, where the λn’s are the eigenvalues of

(A∗A)1/2.

Proposition 1. A Hilbert-Schmidt operator is compact. An operator A is
Hilbert-Schmidt if and only if

∑∞
n=1 λ

2
n <∞, where the λn’s are the eigenvalues

of (A∗A)1/2. In this case, ‖A‖2 = (
∑∞

n=1 λ
2
n)

1/2.

If A is a trace class operator, the trace of A is defined as
∑∞

n=1〈A(en), en〉H,
where {en}∞n=1 is any orthonormal basis of H. Any trace class operator can be
written as a product of two Hilbert-Schmidt operators.

For a random function X valued in H, recall from Definition 3 that the co-
variance operator CX : H → H of X is defined as CX(h) = E{〈X−m,h〉H(X−
m)}. Now we define a covariance operator of a measure in H. All measures
considered in this section are Borel measures, i.e., measures defined on the
σ-filed generated by the open subsets of H.

Definition 10 (Covariance operator). For a measure µ in H, the covariance
operator Sµ of µ is defined such that

〈Sµ(x), y〉H =

∫
H
〈x, z〉H〈y, z〉H µ(dz) .

Remark 3. Compared to the covariance operator of a random variable Z in
Definition 3, 〈CZ(x), y〉H =

∫
H〈z − m,x〉H〈z − m, y〉H µZ(dz), we see that

Definition 10 is actually the uncentered second moment. Such difference does
not affect the main idea.

A covariance operator is necessarily positive definite and self-adjoint. If a
covariance operator has finite trace, we call it a S-operator. In fact, we have
trace Sµ =

∫
H |x|2 µ(dx).

Definition 11 (Mean). For a measure µ in H, the mean of µ is an element
mµ in H such that

〈mµ, x〉H =

∫
H
〈z, x〉H µ(dz) .
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Definition 12 (Characteristic functional). The characteristic functional ϕ of
a measure µ in H is defined as

ϕ(x) =

∫
H
exp{i〈x, y〉H}µ(dy) ,

for x ∈ H.

Finally, we are able to define Gaussian measure in H.

Definition 13 (Gaussian measure). A measure µ in H is Gaussian if for each
x ∈ H, the measurable functional 〈x, ·〉H is normally distributed, i.e., there
exists real numbers mx and σ2

x such that for all a ∈ R,

P (y ∈ H; 〈x, y〉H ≤ a) =

∫ a

−∞

1√
2πσ2

x

exp
{
− (t−mx)

2

2σ2
x

}
dt .

Recall that the characteristic function of a R-valued normal variable X ∼
N(µ, σ2) is ψ(t) = E{exp(itX)} = exp(iµt − σ2t2/2). Using a change of
variable, we have, for a Gaussian measure µ in H, its characteristic functional
ϕ is given by

ϕ(x) =

∫
H
exp{i〈x, y〉H}µ(dy) =

∫
H
exp(is)µx(ds) = ψx(1) ,

where ψx(t) = exp(iµxt − σ2
xt

2/2) is the characteristic function of the normal
variable X = 〈x, ·〉H ∼ N(µx, σ

2
x). In particular, we can show by change of

variables that

µx = 〈mµ, x〉H , σ2
x = 〈Sµ(x), x〉H ,

and thus the characteristic functional ϕ of the Gaussian measure µ is given by

ϕ(x) = exp
{
i〈mµ, x〉H − 〈Sµ(x), x〉H

2

}
.

We also conclude from the expression above that a Gaussian measure is uniquely
determined by its mean and covariance operator.

To simplify exposition, we assume that H is a Hilbert space of functions
on E and m ≡ 0 from now on. A random element X valued in H is called a
Gaussian process if the push-forward measure µ

(
X(·)

)
is a Gaussian measure in

H. Recall from Definition 4 below that the covariance function SX : E×E → R
of X, SX(s, t) = E{X(s)X(t)} is associated with the covariance operator
through

SX(h)(t) = 〈SX(·, t), h〉H ,
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for t ∈ E. The bivariate function SX is also referred as the kernel, or covariance
kernel of X.

Next, we present several examples of the covariance function. A stationary
covariance function is only a function of s − t, and an isotropic covariance
function is only a function of r = |s− t|. The squared exponential covariance
function has the following form

SSE(r) = exp
(−r2
2ℓ2

)
,

where ℓ is called the characteristic length-scale. Since the squared exponential
covariance function is infinite differentiable, the induced Gaussian process is
very smooth, which may be unrealistic.

A less smooth class of covariance function is the Matérn class,

SMatern(r) =
21−ν

Γ(v)

(√2νr

ℓ

)2

Kν

(√2νr

ℓ

)
,

where ν > 0, ℓ > 0 are parameters and Kν is a modified Bessel function. The
induced Gaussian process with the Matérn class covariance function is bνc-
times mean squared differentiable. When ν is half-integer, the Matérn class
covariance function has a more explicit form.

The rational quadratic covariance function has the following form,

SRQ(r) =
(
1 +

r2

2αℓ2

)−α

,

where α and ℓ > 0 are parameters. It can be seen as a scale mixture (an infinite
sum) of squared exponential covariance functions with different characteristic
length-scales. The covariance functions mentioned above are all stationary
and non-degenerate, while other non-stationary covariance functions include
polynomial and neural network classes; see Williams and Rasmussen (2006,
Ch. 4.2) for details.
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